Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Natural genetic variability reduces recalcitrance in poplar.

Identifieur interne : 001756 ( Main/Exploration ); précédent : 001755; suivant : 001757

Natural genetic variability reduces recalcitrance in poplar.

Auteurs : Samarthya Bhagia [États-Unis] ; Wellington Muchero [États-Unis] ; Rajeev Kumar [États-Unis] ; Gerald A. Tuskan [États-Unis] ; Charles E. Wyman [États-Unis]

Source :

RBID : pubmed:27213013

Abstract

BACKGROUND

Lignin content and structure are known to affect recalcitrance of lignocellulosic biomass to chemical/biochemical conversion. Previously, we identified rare Populus trichocarpa natural variants with significantly reduced lignin content. Because reduced lignin content may lower recalcitrance, 18 rare variants along with 4 comparators, and BESC standard Populus was analyzed for composition of structural carbohydrates and lignin. Sugar yields from these plants were measured at 5 process conditions: one for just enzymatic hydrolysis without pretreatment and four via our combined high-throughput hot water pretreatment and co-hydrolysis (HTPH) technique.

RESULTS

Mean of glucan + xylan yields and the best glucan + xylan yield from rare natural poplar variants were 34 and 50 relative percent higher than the high lignin comparator (BESC-316) at the highest severity HTPH condition, respectively. The ability of HTPH to solubilize a large portion of xylan from solids led to small differences in xylan yields among poplar variants. However, HTPH showed large differences in glucan yields, and hence glucan + xylan yields, among the poplar variants. The high lignin comparator did not display lowest glucan + xylan yields with HTPH at moderate pretreatment severity compared to rare variants, but on the other hand, the low lignin comparator was a consistent top performer at all 5 process conditions. Furthermore, the low lignin comparator (GW-11012) showed a 15 absolute percent increase in glucan + xylan yield compared to the high lignin comparator at the most severe HTPH condition. Overall, relative variant rankings varied greatly with pretreatment severity, but poplar deconstruction was significantly enhanced when the pretreatment temperature was increased from 140 and 160 to 180 °C at the same pretreatment severity factor.

CONCLUSIONS

Glucan yields from high severity HTPH of rare natural poplar variants with reduced lignin content were significantly higher than from the high lignin comparator. Because of the significant effect of processing conditions on the performance rankings, selection of the best performing biofuel feedstocks should be based on sugar yields tested at conditions that represent industrial practice. From a feedstock perspective, the most consistent variants, SKWE-24-2 and GW-11012, provide key insights into the genetic improvement of versatile lignocellulosic biofuels feedstock varieties.


DOI: 10.1186/s13068-016-0521-2
PubMed: 27213013
PubMed Central: PMC4874023


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Natural genetic variability reduces recalcitrance in poplar.</title>
<author>
<name sortKey="Bhagia, Samarthya" sort="Bhagia, Samarthya" uniqKey="Bhagia S" first="Samarthya" last="Bhagia">Samarthya Bhagia</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Muchero, Wellington" sort="Muchero, Wellington" uniqKey="Muchero W" first="Wellington" last="Muchero">Wellington Muchero</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27213013</idno>
<idno type="pmid">27213013</idno>
<idno type="doi">10.1186/s13068-016-0521-2</idno>
<idno type="pmc">PMC4874023</idno>
<idno type="wicri:Area/Main/Corpus">001782</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001782</idno>
<idno type="wicri:Area/Main/Curation">001782</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001782</idno>
<idno type="wicri:Area/Main/Exploration">001782</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Natural genetic variability reduces recalcitrance in poplar.</title>
<author>
<name sortKey="Bhagia, Samarthya" sort="Bhagia, Samarthya" uniqKey="Bhagia S" first="Samarthya" last="Bhagia">Samarthya Bhagia</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Muchero, Wellington" sort="Muchero, Wellington" uniqKey="Muchero W" first="Wellington" last="Muchero">Wellington Muchero</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Lignin content and structure are known to affect recalcitrance of lignocellulosic biomass to chemical/biochemical conversion. Previously, we identified rare Populus trichocarpa natural variants with significantly reduced lignin content. Because reduced lignin content may lower recalcitrance, 18 rare variants along with 4 comparators, and BESC standard Populus was analyzed for composition of structural carbohydrates and lignin. Sugar yields from these plants were measured at 5 process conditions: one for just enzymatic hydrolysis without pretreatment and four via our combined high-throughput hot water pretreatment and co-hydrolysis (HTPH) technique.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Mean of glucan + xylan yields and the best glucan + xylan yield from rare natural poplar variants were 34 and 50 relative percent higher than the high lignin comparator (BESC-316) at the highest severity HTPH condition, respectively. The ability of HTPH to solubilize a large portion of xylan from solids led to small differences in xylan yields among poplar variants. However, HTPH showed large differences in glucan yields, and hence glucan + xylan yields, among the poplar variants. The high lignin comparator did not display lowest glucan + xylan yields with HTPH at moderate pretreatment severity compared to rare variants, but on the other hand, the low lignin comparator was a consistent top performer at all 5 process conditions. Furthermore, the low lignin comparator (GW-11012) showed a 15 absolute percent increase in glucan + xylan yield compared to the high lignin comparator at the most severe HTPH condition. Overall, relative variant rankings varied greatly with pretreatment severity, but poplar deconstruction was significantly enhanced when the pretreatment temperature was increased from 140 and 160 to 180 °C at the same pretreatment severity factor.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Glucan yields from high severity HTPH of rare natural poplar variants with reduced lignin content were significantly higher than from the high lignin comparator. Because of the significant effect of processing conditions on the performance rankings, selection of the best performing biofuel feedstocks should be based on sugar yields tested at conditions that represent industrial practice. From a feedstock perspective, the most consistent variants, SKWE-24-2 and GW-11012, provide key insights into the genetic improvement of versatile lignocellulosic biofuels feedstock varieties.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27213013</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Natural genetic variability reduces recalcitrance in poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>106</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-016-0521-2</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Lignin content and structure are known to affect recalcitrance of lignocellulosic biomass to chemical/biochemical conversion. Previously, we identified rare Populus trichocarpa natural variants with significantly reduced lignin content. Because reduced lignin content may lower recalcitrance, 18 rare variants along with 4 comparators, and BESC standard Populus was analyzed for composition of structural carbohydrates and lignin. Sugar yields from these plants were measured at 5 process conditions: one for just enzymatic hydrolysis without pretreatment and four via our combined high-throughput hot water pretreatment and co-hydrolysis (HTPH) technique.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Mean of glucan + xylan yields and the best glucan + xylan yield from rare natural poplar variants were 34 and 50 relative percent higher than the high lignin comparator (BESC-316) at the highest severity HTPH condition, respectively. The ability of HTPH to solubilize a large portion of xylan from solids led to small differences in xylan yields among poplar variants. However, HTPH showed large differences in glucan yields, and hence glucan + xylan yields, among the poplar variants. The high lignin comparator did not display lowest glucan + xylan yields with HTPH at moderate pretreatment severity compared to rare variants, but on the other hand, the low lignin comparator was a consistent top performer at all 5 process conditions. Furthermore, the low lignin comparator (GW-11012) showed a 15 absolute percent increase in glucan + xylan yield compared to the high lignin comparator at the most severe HTPH condition. Overall, relative variant rankings varied greatly with pretreatment severity, but poplar deconstruction was significantly enhanced when the pretreatment temperature was increased from 140 and 160 to 180 °C at the same pretreatment severity factor.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Glucan yields from high severity HTPH of rare natural poplar variants with reduced lignin content were significantly higher than from the high lignin comparator. Because of the significant effect of processing conditions on the performance rankings, selection of the best performing biofuel feedstocks should be based on sugar yields tested at conditions that represent industrial practice. From a feedstock perspective, the most consistent variants, SKWE-24-2 and GW-11012, provide key insights into the genetic improvement of versatile lignocellulosic biofuels feedstock varieties.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bhagia</LastName>
<ForeName>Samarthya</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muchero</LastName>
<ForeName>Wellington</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Rajeev</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuskan</LastName>
<ForeName>Gerald A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wyman</LastName>
<ForeName>Charles E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">High-throughput pretreatment and co-hydrolysis</Keyword>
<Keyword MajorTopicYN="N">Lignin comparators</Keyword>
<Keyword MajorTopicYN="N">Liquid hot water pretreatment</Keyword>
<Keyword MajorTopicYN="N">Poplar ranks</Keyword>
<Keyword MajorTopicYN="N">Rare poplar variants</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27213013</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-016-0521-2</ArticleId>
<ArticleId IdType="pii">521</ArticleId>
<ArticleId IdType="pmc">PMC4874023</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Bioeng. 2010 Feb 1;105(2):231-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19731251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2014 Mar;111(3):485-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24037461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2011;2:121-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2007 Nov-Dec;23(6):1333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17973399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISRN Biotechnol. 2014 May 04;2014:463074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25937989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2011 Jan 5;48(1):54-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22112771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1990 Jul;36(3):275-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18595079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1985 Oct;150(1):76-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3843705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6300-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Sep;91(6):1525-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21796383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2006 Aug 20;94(6):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2014 Jul;111(7):1341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24522973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Oct;46(10):1089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25151358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jan 23;16:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25613058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1999 Oct 1;15(5):777-793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2012 Apr;166(8):1908-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22391693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2015 Jun 19;4(6):707-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25587748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Apr;96(6):673-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15588770</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Bhagia, Samarthya" sort="Bhagia, Samarthya" uniqKey="Bhagia S" first="Samarthya" last="Bhagia">Samarthya Bhagia</name>
</region>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<name sortKey="Muchero, Wellington" sort="Muchero, Wellington" uniqKey="Muchero W" first="Wellington" last="Muchero">Wellington Muchero</name>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001756 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001756 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27213013
   |texte=   Natural genetic variability reduces recalcitrance in poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27213013" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020